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ul. Świȩtokrzyska 15, 25-406 Kielce, Poland, e-mail: wlod@pu.kielce.pl

Abstract

Numerical modelling of quantum effects caused by bosonic or fermionic char-
acter of secondaries produced in high energy collisions of different sorts is at
the moment still far from being established. In what follows we propose novel
numerical method of modelling Bose-Einstein correlations (BEC) observed
among identical (bosonic) particles produced in such reactions. We argue
that the most natural approach is to work directly in the momentum space
of produced secondaries in which the Bose statistics reveals itself in their
tendency to bunch in a specific way in the available phase space. Fermionic
particles can also be treated in similar fashion.

The multiparticle production processes consist substantial part of the high
energy collisions and are of considerable theoretical interest. Unfortunately their
description is so far available only by means of numerical Monte Carlo codes
based to some extent on modern theoretical ideas but otherwise remaining purely
phenomenological [1]. They are build in such manner as to describe as close as
possible the complicated final state of such reaction, cf., Fig. 1. However, using
classical (positive difined) probabilities as their basic tool such MC codes cannot
directly describe some observed features, which are connected with Bose-Einstein
(BE) (or Fermi-Dirac (FD)) statistics of produced secondaries (in case they are
identical and occupy almost the same parts of the phase space defined by the
uncertainty relation, see Fig. 1). When two (or more) identical particles of the
same kind are observed, their common wave function should be symmetrized (for
BE statistics) or antisymmetrized (for FD statistics) what results in characteristic
shapes of (two particle, for example) correlation function C2(Q = |p1 − p2|) =
N(p1, p2)/[N(p1) · N(p2)], cf., Fig. 2.

Referring for details of Bose-Einstein correlations (BEC) to the literature (cf.,
for example, [2] and references therein) let us concentrate here directly on the
problem of their proper numerical modelling, i.e., such in which the bosonic char-
acter of secondaries produced in hadronization process are going to be accounted
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Figure 1: Schematic view of high energy collision resulting in production of many particles of
different statistics.

for from the very beginning. This problem was so far considered only in [3] (using
statistical approach based on information theory approach, cf., however, also [4]).
All other approaches, which claim to model BEC numerically [5], simply add to
the outcomes of existing MC codes [1] some afterburners, which modify them in
a suitable way to be able fit the BEC data. Such approach inevitably leads to
such unwanted features as violation of energy-momentum conservation or changes
in the original (i.e., obtained directly form MC code) multiparticle spectra.

In [6] we have proposed afterburner free from such unwanted effects. It was
based on different concept of introducing quantum mechanical (QM) effects in the
otherwise purely probabilistic distributions then those proposed in [7]. Namely,
each MC code provides us usually with a given number of particles, each one en-
dowed with either (+) or (−) or (0) charge and with well defined spatio-temporal
position and energy-momentum. But experiment provides us information on only
the first and last characteristics. The spatio-temporal information is not avail-
able directly. In fact, the universal hope expressed in [2, 5] is that precisely this
information can be deduced from the previous two via the measured BEC. Our
reasoning was as follows: (i) BEC phenomenon is of QM origin therefore one has to
introduce in the otherwise purely classical distributions provided by MCG the new
element mimicking QM uncertainties; (ii) it cannot be done with energy-momenta
because they are measured and therefore fixed; (iii) the next candidate, i.e., spatio-
temporal characteristics can be changed but it was already done in [7, 5]; (iv) one
is thus left with charges and in [6] we have simply assigned (on event-by-event
basis) new charges to the particles from MCG conserving, however, the original
multiplicities of (+/ − /0). This has been done in such way as to make particles
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Figure 2: Example of BE and FD statistics (left panel) and two particle correlation functions
they lead to (right panels).

of the same charge to be located maximally near to each other in the phase space
exploring for this natural fluctuations in spatio-temporal and energy-momentum
characteristic of the outcome of MCG. The advantages of such approach are: (a)
energy-momentum is automatically conserved and multiparticle distributions are
not modified and (b) it is applicable already on the level of each event provided
by MCG (not only, as some of propositions of [5] only to all events). However, the
new assignment of charges introduces a profound change in the structure of the
original MCG. Generally speaking (cf. [6] for details) it requires introduction of
bunchings of particles of the same charge.

This observation will be the cornerstone of our new proposition. Let us first
remind that idea of bunching of particles as quantum statistical (QS) effect is not
the new one [8]. It was used in connection with BEC for the first time in [9] and
then was a basis of the so called clan model of multiparticle distributions leading
in natural way to their negative binomial (NB) form observed in experiment [10].
It was then again introduced in the realm of BEC in [11] and [3, 4]. Because
our motivation comes basically from [3] let us outline shortly its basic points. It
deals with the problem of how to distribute in a least biased way a given number of
bosonic secondaries, 〈n〉 = 〈n(+)〉+〈n(−)〉+〈n(0)〉, 〈n(+)〉 = 〈n(−)〉 = 〈n(0)〉. Using
information theory approach (cf., [12]) their rapidity distribution was obtained in
form of grand partition function with temperature T and chemical potential µ.
In addition, the rapidity space was divided into cells of equal size δy each (it was
fitted parameter). It turned out that whereas the very fact of existence of such cells
was enough to obtain reasonably good multiparticle distributions, P (n), (actually,
in the NB-like form), their size, δy, was crucial for obtaining the characteristic
form of the 2−body BEC function C2(Q = |pi − pj |) (peaked and greater than



4 6th International Symposium “Frontiers of Fundamental and Computational Physics”

unity at Q = 0 and then decreasing in a characteristic way towards C2 = 1
for large values of Q, see Fig. 2) out of which one usually deduces the spatio-
temporal characteristics of the hadronization source [2] (see [3] for more details).
The outcome was obvious: to get C2 peaked and greater than unity at Q = 0 and
then decreasing in a characteristic way towards C2 = 1 for large values of Q one
must have particles located in cells in phase space which are of nonzero size. It
means then that from C2 one gets not the size of the hadronizing source but only
size of the emitting cell, in [3] R ∼ 1/δy, cf. [13]. In the quantum field theoretical
formulation of BEC this directly corresponds to the necessity of replacing delta
functions in commutator relations by a well defined peaked functions introducing
in this way same dimensional scale to be obtained from fits to data [14]. This fact
was known even before but without any phenomenological consequences [15].

Let us suppose now that we have mass M and we know that it hadronizes into
N = 〈n〉 bosonic particles (assumed to be pions of mass m) with equal numbers of
(+/ − /0) charges and with limited transverse momenta pT . Let the multiplicity
distribution of these pions follows some NB-like form, broader than Poissonian
one. Suppose also that the two-particle correlation function of identical particles,
C2(Q), has the specific BEC form mentioned above. How to model such process
from the very beginning, i.e., in such way that bosonic character of produced
particles is accounted for from the very beginning and not imposed at the end?
We propose the following steps (illustrated by comparison to some selected LEP
e+e− data [16]):

(1) Using some (assumed) function f(E) select a particle of energy E
(1)
1 and

charge Q(1). The actual form of f(E) should reflect somehow our a priori

knowledge of the particular collision process under consideration. In what
follows we shall assume that f(E) = exp (−E/T ), with T being parameter
(playing in our example the role of ”temperature”).

(2) Treat this particle as seed of the first elementary emitting cell (EEC) and
add to it, until the first failure, other particles of the same charge Q(1)

selected according to distribution P (E) = P0 · f(E), where P0 is another
parameter (actually it plays here the role of ”chemical potential” µ = T ·
ln P0). This assures that the number of particles in this first EEC, k1, will
follow geometrical (or Bose-Einstein) distribution, and in precisely this way
one accounts for the bosonic character of produced pions. This results in
C2(Q) > 1 but only at one point, namely for Q = 0.

(3) To get the observed spread out of C2(Q) one has to allow that particles in
this EEC have (slightly) different energies from energy of the particle being
its seed. To do it allow that each additional particle selected in point (2)

above have energy E
(1)
i selected from some distribution function peaked at

E
(1)
1 , G

(

E
(1)
1 − E

(1)
i

)

.

(4) Repeat points (1) to (2) as long as there is enough energy left. Correct in
every event for every energy-momentum nonconservation caused by selection
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procedure and assure that N (+) = N (−).
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Figure 3: Schematic view of our algoritm, which leads to bunches of particles (clans). Whereas
in [10] these clans could consist of any particles distributed logarithmically in our case they consist
of particles of the same charge and (almost) the same energy and are distributed geometrically
to comply with their bosonic character.

As result we get a number of EECs with particles of the same charge and (almost)
the same energy, which we regard as being equivalent to clans in the [10] (see Fig.
3). These clans are distributed in the same way as the particles forming the seeds
for those EEC, i.e., according to Poisson distribution (see Fig. 4, upper-left panel).
On the other hand, as was already said, particles in each EEC will be distributed
according to geometrical distribution (see Fig. 4, upper-right panel). As a result
the overall distribution of particles will be of the so called Pòlya-Aeppli distribution
[17]. It fits our examplatory data reasonable well. It is interesting to notice at this
point that to get NB distribution resulting from the classical clan model of [10] one
should have logarithimc rather than geometrical distribution of particles in EEC,
which would then not account for the bosonic character of produced secondaries.
In this respect our model differs from this classical clan model and we see that
what we have obtained is indeed its quantum version, therefore its proposed name:
quantum clan model.

The first preliminary results presented in Fig. 4 are quite encouraging (espe-
cially when one remembers that so far effects of resonances and all kind of final
state interactions to which C2 is sensitive were neglected here). It remains now to
be checked what two-body BEC functions for other components of the momentum
differences and how they depend on the EEC parameters: T , P0 and σ. So far the
main outcome is that BEC are due to EEC’s only and therefore provide us mainly
with their characteristics (it is worth to mention at this point that essentially
this type of approach has been also proposed to simulate Bose-Einstein conden-
sate phenomenon in [18]). This should clear at least some of many apparently
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Figure 4: Upper panels: distribution of cells and particles in a given cell. Lower-left panel:
the corresponding summary P (n) which is convolution of both P (ncell) and P (np). Lower-right
panel: examples of the corresponding corresponding correlation functions C2(Q) . Two sets of
parameters were used. Data are from [16].

”strange” results obtained from BEC recently (see Quark Matter 2004 proceed-
ings, especially [19]). The most intriguing is the fact that apparently the ”size”
of the hadronizing source deduced from the BEC data does not vary very much
with energy and with the size of colliding objects as has been naively expected [2].
In our approach this has simple explanation, see Fig. 5. The point is that BEC
are mainly sensitive to the correlation length, which in our case is dimension of
the emitting cell, not to dimension of the ”fireball” in which hadronization process
takes place. The size of this fireball depends mainly on the number of produced
secondaries [19], which in our case is given by the ”partition temperature” pa-
rameter T and by the ”chemical potential” parameter µ = T · ln P0. They are
changing with mass M (and therefore with the energy of reaction and the type
of projectile). On the other hand dimension of EEC is given entirely by param-
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Figure 5: Schematic vie of how in our approach the size of the EEC compares with the size of
hadronizing fireball at different energies and for different types of projectiles.

eter σ describing the spread of energy of particles belonging to this EEC, which
is only weakly depending on energy (if at all). We shall close with mentioning
that our approach accounts also for multiparticle BEC and, because of this, by
intermittence effects seen in data (at least to some extend) [6].
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[5] L. Lönnblad and T. Sjöstrand, Eur. Phys. J. C2(1998) 165; K. Fia lkowski and
R. Wit, Eur. Phys. J. C2(1998) 691; K. Fia lkowski, R. Wit and J. Wosiek,
Phys. Rev. D58(1998) 094013; T.Wibig, Phys. Rev. D53 (1996) 3586. B. An-
dersson, Acta Phys. Polon. B29 (1998) 1885; J.P. Sullivan et al., Phys. Rev.

http://aps.arXiv.org/abs/hep-ph/0001233


8 6th International Symposium “Frontiers of Fundamental and Computational Physics”

Lett. 70, 3000 (1993); K. Geiger, J. Ellis, U. Heinz and U.A. Wiedemann,
Phys. Rev. D61(2000) 054002.

[6] O.V. Utyuzh, G. Wilk and Z. W lodarczyk, Phys. Lett. B522 (2001) 273 and
Acta Phys. Polon. B33(2002) 2681.

[7] A. Bia las and A. Krzywicki, Phys. Lett. B354, (1995) 134; H. Merlitz and
D. Pelte, Z. Phys. A351(1995) 187 and A357 (1997) 175; U.A. Wiedemann et
al., Phys. Rev. C56 (1997) R614; T. Csörgő and J. Zimányi, Phys. Rev. Lett.
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